高二数学教学计划

时间:2024-07-02 19:25:20
高二数学教学计划范文集合七篇

高二数学教学计划范文集合七篇

时间就如同白驹过隙般的流逝,很快就要开展新的工作了,让我们对今后的工作做个计划吧。那么你真正懂得怎么制定计划吗?以下是小编帮大家整理的高二数学教学计划7篇,希望能够帮助到大家。

高二数学教学计划 篇1

一、学生基本情况

261班共有学生75人,268班共有学生72人。268班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,

二、教学要求

(一)情意目标

(1)经过分析问题的方法的教学、经过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

(2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

(3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿

(二)能力要求

1、培养学生记忆能力。

(1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

(2)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)经过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)经过解不等式及不等式组的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)经过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

3、培养学生的思维能力。

(1)经过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

(2)经过解析几何与不等式的一题多解、多题一解、经过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

(3)经过不等式引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的能力。

(5)经过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。

(6)经过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

4、培养学生的观察能力。

(1)在比较鉴别中,提高观察的准确性和完整性。

(2)经过对个性特征的分析研究,提高观察的深刻性。

(三)知识要求

1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;

2、经过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

三、教材简要分析

1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并经过分析标准方程研究它们的性质。

四、重点与难点

(一)重点

1、不等式的证明、解法。

2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

(二)难点

1、含绝对值不等式的解法,不等式的证明。

2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。

3、用坐标法研究几何问题,求曲线方程的一般方法。

五、教学措施

1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

2、持之以恒与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

3、加强教育教学研究,持之以恒学生主体性原则,持之以恒循序渐进原则,持之以恒启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

4、积极参加与组织集体备课,共同研究,努力提高授课质量

5、持之以恒向同行听课,取人所长,补己之短。相互研究,共同进步。

6、持之以恒学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。 7、加强数学研究课的教学研究指导,培养学识的动手能力。

六、课时安排

本学期共81课时

1、不等式18课时

2、直线与圆的方程25课时

3、圆锥曲线20课时

4、研究课18课时

高二数学教学计划 篇2

一、学情分析:

本学期我负责的是1班和6班的数学教学工作,这两个班级共有学生78人。6班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的 ……此处隐藏7187个字……你能写出求解一般的二元一次方程组的步骤吗?

上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法

对于一般的二元一次方程组 可以写出类似的求解步骤:

第一步,①×b2-②×b1,得 ;③

第二步,解③,得 .

第三步,②×a1-①×a2,得 ;④

第四步,解④,得 ;

第五步,得到方程组的解为

(高斯消去法)

思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?

思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.

你认为:

(1)这些步骤的个数是有限的还是无限的?

(2)每个步骤是否有明确的计算任务?

总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.

算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.

广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算

法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.

(三)例题剖析,巩固提高

例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?

算法:

第一步,用2除7,得到余数1,所以2不能整除7.

第二步,用3除7,得到余数1,所以3不能整除7.

第三步,用4除7,得到余数3,所以4不能整除7.

第四步,用5除7,得到余数2,所以5不能整除7.

第五步,用6除7,得到余数1,所以6不能整除7.

因此,7是质数.

课堂练习1:

整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?

思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.

(1)用i表示2~88中的任意一个整数,并从2开始取数;

(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;

(3)这个操作一直进行到i取88为止.

你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?

算法设计:

第一步,令i=2;

第二步,用i除89,得到余数r;

第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;

第四步,判断“i>88”是否成立?若是,则89是质

数,结束算法;否则,返回第二步.

探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?

在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?

例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?

算法1:S1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。

S2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。

S3 再根据缺的腿的条数确定小兔的数量: (48-34)/2=7只

S4 最后确定小鸡的数量:17-7=10只.

算法2:S1 首先设 只小鸡, 只小兔。

S2 再列方程组为:

S3 解方程组得:

S4 指出小鸡10只,小兔7只。

算法3:S1 首先设 只小鸡,则有 只小兔

S2 列方程

S3 解方程得 ,则

S4 指出小鸡10只,小兔7只.

算法4:S1 “请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿

S2 有小兔 只

S3 有小鸡 只

S4 指出小鸡10只,小兔7只.

算法5:S1 有小兔 只

S2 有小鸡 只

二分法:

对于区间[a,b ]上连续不断,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法.

例3(课本P4例2):写

出用“二分法”求方程 的近似解的算法.

算法分析:

令f(x)= ,则方程 的解就是函数f(x)的零点.

第一步,令f(x)= ,给定精确度d.

第二步,确定区间[a,b],满足f(a)·f(b)<0.

第三步,取区间中点 .

第四步,若f(a)·f(m)<0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].

将新得到的含零点的区间仍记为[a,b];

第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.

(四)课堂小结,巩固反思

1、算法的主要特点:

(1)有限性:一个算法在执行有限步后必须结束;

(2)确切性:算法的每一个步骤和次序必须是确定的;

(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.

(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.

2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:

(1)符合运算规则,计算机能操作;

(2)每个步骤都有一个明确的计算任务;

(3)对重复操作步骤作返回处理;

(4)步骤个数尽可能少;

(5)每个步骤的语言描述要准确、简明.

《高二数学教学计划范文集合七篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式