集合间的基本关系教案
作为一名无私奉献的老师,通常会被要求编写教案,教案有利于教学水平的提高,有助于教研活动的开展。快来参考教案是怎么写的吧!下面是小编为大家整理的集合间的基本关系教案,欢迎阅读与收藏。
一、预习目标:
初步理解子集的含义,能说明集合的基本关系。
二、预习内容:
阅读教材第7页中的相关内容,并思考回答下例问题:
(1)集合A是集合B的真子集的含义是什么?什么叫空集?
(2)集合A是集合B的真子集与集合A是集合B的子集之间有什么区别?
(3)0,{0}与 三者之间有什么关系?
(4)包含关系 与属于关系 正义有什么区别?试结合实例作出解释.
(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?
(6)能否说任何一人集合是它本身的子集,即 ?
(7)对于集合A,B,C,D,如果A B,B C,那么集合A与C有什么关系?
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容
课内探究学案
一、学习目标
(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用 图表达集合间的关系,体会直观图示对理解抽象概念的作用.
学习重点:集合间的包含与相等关系,子集与其子集的概念.
学习难点:难点是属于关系与包含关系的区别.
二、学习过程
1、 思考下列问题
问题l:实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?
问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?
(1) ;
(2)设A为某中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;
(3)设
(4) .
问题3:与实数中的结论“若 ”相类比,在集合中,你能得出什么结论?
你对上面3个问题的结论是
2、例题
例题1..某工厂生产的产品在质量和长度上都合格时,该产品才合格。若用A表示合格产品,B表示质量合格的产品的集合,C表示长度合格的产品的集合.则下列包含关系哪些成立?
试用Venn图表示这三个集合的关系。.
变式训练1用适当的符号( )填空:
①4 ②11
例题2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.
变式训练2写出集合{0,1,2}的所有子集,并指出哪些是它的真子集.
5 课堂小结
三、当堂检测
(1)讨论下列集合的包含关系
①A={本年天阴的日子},B={本年天下雨的日子};
②A={-2,-1,0,1,2,3},B={-1,0,1}。
(2)写出集合A={1,2,3}的所有非空真子集和非空子集
课后练习与提高
1用 连接下列集合对:
①A={济南人},B={山东人};
②A=N,B=R;
③A={1,2,3,4},B={0,1,2,3,4,5};
④A={本校田径队队员},B={本校长跑队队员};
⑤A={11月份的公休日},B={11月份的星期六或星期天}
2若A={ , , },则有几个子集,几个真子集?写出A所有的子集。
(一)教学目标;
1.知识与技能
(1)理解集合的包含和相等的关系.
(2)了解使用Venn图表示集合及其关系.
(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.
2.过程与方法
(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系.
(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.
(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.
3.情感、态度与价值观
应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.
(二)教学重点与难点
重点:子集的概念;难点:元素与子集,即属于与包含之间的区别.
(三)教学方法
在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质.
(四)教学过程
教学环节教学内容师生互动设计意图
创设情境提出问题思考:实数有相关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系.师:对两个数a、b,应有a>b或a = b或a<b.
而对于两个集合A、B它们也存在A包含B,或B包含A,或A与B相等的关系.类比生疑,
引入课题
概念形成分析示例:
示例1:考察下列三组集合,并说明两集合内存在怎样的关系
(1)A = {1,2,3}
B = {1,2,3,4,5}
(2)A = {新华中学高(一)6班的全体女生}
B = {新华中学高(一)6 班的全体学生}
(3)C = {x | x是两条边相等的三角形}
D = {x | x是等腰三角形}
1.子集:
一般地,对于两个集合A、B,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作 ,读作:“A含于B”(或B包含A)
2.集合相等:
若 ,且 ,则A=B.
生:实例(1)、(2)的共同特点是A的每一个元素都是B的元素.
师:具备(1)、(2)的两个集合之间关系的称A是B的子集,那么A是B的'子集怎样定义呢?
学生合作:讨论归纳子集的共性.
生:C是D的子集,同时D是C的子集.
师:类似(3)的两个集合称为相等集合.
师生合作得出子集、相等两概念的数学定义.通过实例的共性探究、感知子集、相等概念,通过归纳共性,形成子集、相等的概念.
初步了解子集、相等两个概念.
概念
深化
示例1:考察下列各组集合,并指明两集合的关系:
(1)A = Z,B = N;
(2)A = {长方形},B = {平行四边形};
(3)A={x| x2–3x+2=0},B ={1,2}.
1.Venn图
用平面上封闭曲线的内部代表集合.
如果 ,则Venn图表示为:
2.真子集
如果集合 ,但存在元素x∈B,且x A,称A是B的真子集,记作A
B (或B A).
示例3 考察下列集合. 并指出集合中的元素是什么?
(1)A = {(x,y) | x + y =2}.
(2)B = {x | x2 + 1 = 0,x∈R}.
3.空集
称不含任何元素的集合为空集,记作 .
规定:空集是任何集合的子集;空集是任何非空集合的真子集.示例1 学生思考并回答.
生:(1)
(2)
(3)A = B
师:进一步考察(1)、(2)
不难发现:A的任意元素都在B中,而B中存在元素不在A中,具有这种关系时,称A是B的真子集.
示例3 学生思考并回答.
生:(1)直线x+y=2上的所有点
(2)没有元素
师:对于类似(2)的集合称这样的集合为空集.
师生合作归纳空集的定义.再次感知子集相等关系,加深对概念的理解,并利用韦恩图从“形”的角度理解包含关系,层层递进形成真子集、空集的概念.
能力
提升一般结论:
① .
②若 , ,则 .
③A = B ,且 .师:若a≤a,类比 .
若a≤b,b≤c,则a≤c类比.
若 , ,则 .
师生合作完成:
(1)对于集合A,显然A中的任何元素都在A中,故 .
(2)已知集合 ,同时 ,即任意x∈A x∈B x∈C,故 .
升华并体会类比数学思想的意义.
应用
举例例1(1)写出集合{a、b}的所有子集;
(2)写出集合{a、b、c}的所有子集;
(3)写出集合{a、b、c、d}的所有子集;
一般地:集合A含有n个元素
则A的子集共有2n个.
A的真子集共有2n – 1个.学习练习求解,老师点评总结.
师:根据问题(1)、(2)、(3),子集个数的探究,提出问题:
已知A = {a1,a2,a3…an},求A的子集共有多少个?通过练习加深对子集、真子集概念的理解.
培养学生归纳能力.
归纳
总结子集: 任意x∈A x∈B
真子集:A B 任意x∈A x∈B,但存在x0∈B,且x0 A.
集合相等:A = B 且
空集( ):不含任何元素的集合
性质:① ,若A非空,则 A.
② .
③ , .师生合作共同归纳—总结—交流—完善.
师:请同学合作交流整理本节知识体系引导学生整理知识,体会知识的生成,发展、完善的过程.
课后
作业1.1 第二课时习案学生独立完成巩固基础
提升能力
备选训练题
例1 能满足关系{a,b} {a,b,c,d,e}的集合的数目是( A )
A.8个B.6个C.4个D.3个
【解析】由关系式知集合A中必须含有元素a,b,且为{a,b,c,d,e}的子集,所以A中元素就是在a,b元素基础上,把{c,d,e}的子集中元素加上即可,故A = {a,b},A = {a,b,c},A = {a,b,d},A = {a,b,e},A = {a,b,c,d},A = {a,b,c,e},A = {a,b,d,e},A = {a,b,c,d,e},共8个,故应选A.
例2 已知A = {0,1}且B = {x | },求B.
【解析】集合A的子集共有4个,它们分别是: ,{0},{1},{0,1}.
由题意可知B = { ,{0},{1},{0,1}}.
例3 设集合A = {x – y,x + y,xy},B = {x2 + y2,x2 – y2,0},且A = B,求实数x和y的值及集合A、B.
【解析】∵A = B,0∈B,∴0∈A.
若x + y = 0或x – y = 0,则x2 – y2 = 0,这样集合B = {x2 + y2,0,0},根据集合元素的互异性知:x + y≠0,x – y≠0.
∴ (I)或 (II)
由(I)得: 或 或
由(II)得: 或 或
∴当x = 0,y = 0时,x – y = 0,故舍去.
当x = 1,y = 0时,x – y = x + y = 1,故也舍去.
∴ 或 ,
∴A = B = {0,1,–1}.
例4 设A = {x | x2 – 8x + 15 = 0},B = {x | ax – 1 = 0},若 ,求实数a组成的集合,并写出它的所有非空真子集.
【解析】A = {3,5},∵ ,所以
(1)若B = ,则a = 0;
(2)若B≠ ,则a≠0,这时有 或 ,即a = 或a = .
综上所述,由实数a组成的集合为 .
其所有的非空真子集为:{0}, 共6个.
文档为doc格式